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Mean-Field Behavior for the Survival Probability
and the Percolation Point-to-Surface Connectivity
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We consider the critical survival probability (up to time t) for oriented percola-
tion and the contact process, and the point-to-surface (of the ball of radius t)
connectivity for critical percolation. Let θt denote both quantities. We prove in
a unified fashion that, if θt exhibits a power law and both the two-point func-
tion and its certain restricted version exhibit the same mean-field behavior, then
θt � t−1 for the time-oriented models with d > 4 and θt � t−2 for percolation
with d >7.

KEY WORDS: Contact process; percolation; survival probability; point-to-sur-
face connectivity; critical exponents; mean-field behavior.

1. INTRODUCTION

Percolation, oriented percolation and the contact process are known
to exhibit a phase transition. Various interesting properties around the
model-dependent critical point pc have been studied and revealed, but still
there are many open problems. One of the most important problems is to
investigate critical exponents that characterize singular behavior of observ-
ables. Some of them were identified in certain situations.

In this paper, we consider the critical survival probability up to time
t for oriented percolation and the contact process, and the probability of
the origin o ∈ Z

d being connected to the surface of the ball of radius t ,
centered at the origin, for critical percolation. Since the survival proba-
bility is a time-oriented version of the point-to-surface connectivity, we
denote both quantities by θt . It is believed that θt exhibits a power law:
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θt ≈ t−1/δr as t →∞ (in some appropriate sense). In the percolation school,
δr is sometimes called the one-arm exponent. Lawler, Schramm and Werner
proved δr = 48/5 for the two-dimensional site percolation on the triangu-
lar lattice, using the estimates for the stochastic Loewner evolution with
parameter 6 (see ref. 21 for a precise statement). Except for this result,
there has been no proof of existence of δr, or identification of its values
for finite-range models in mathematically rigorous manner, even in high
dimensions.

In contrast, the behavior of the two-point function is well-understood
in high dimensions. For percolation, the two-point function at pc, denoted
τ(x), is the probability of o, x ∈Z

d being connected to each other, defined
at pc. It has been proved that τ(x) � |x|−(d−2+η) as |x| → ∞ with η =
0 when d > 6 and the number N of neighbors is sufficiently large,(9,10)

where “�” means that the left-hand side divided by the right-hand side
is bounded away from zero and infinity. For the time-oriented models, the
two-point function at pc, denoted τt (x), is, in terms of the contact process,
the probability of x ∈Z

d being infected at time t by the infected individ-
ual at o∈Z

d at time 0, defined at pc. It has been proved that supx τt (x)�
t−d/α, τ̂t ≡ ∑

x τt (x) � tη and
∑

x |x|2 τt (x)/τ̂t � t2ν as t → ∞, with α = 2,
η=0 and ν =1/2, when the spatial dimension d is above 4 and N is suffi-
ciently large.(17,19,20,23) These dimension-independent values of the critical
exponents are equal to the values for branching random walk (mean-field
model). Let ρ (�1/δr) be defined by θt � t−ρ as t →∞. It is not so hard
to see that η = 0 implies ρ �2 for percolation and ρ �1 for the time-ori-
ented models (see Section 3.1), where the upper bounds are the mean-field
values of ρ.

On the other hand, the critical exponents are known to satisfy the so-
called hyperscaling inequalities, e.g., d − 2 + η�2ρ for percolation(27) and
dν �η + 2ρ for the time-oriented models (cf., (5.2) and (5.4) in Ref. 25),
where the critical exponents were defined in a wider sense. Other hy-
perscaling inequalities were also derived.(7,25,27) By those inequalities, the
mean-field values are known to be incompatible with d <6 for percolation
and with d <4 for the time-oriented models. These threshold dimensions
are called the upper critical dimensions for the corresponding models.

In this paper, we prove in a unified way that ρ takes on the mean-field
values for the time-oriented models with d > 4 and for percolation with
d >7, if ρ exists and both the two-point function and its certain restricted
version exhibit the same mean-field behavior (see Assumption 2.1). The
assumption on the restricted two-point function is expected to hold above
the upper critical dimension for each model, but is still insufficient to
extend ρ =2 for percolation down to d >6. For sufficiently spread-out ori-
ented percolation with d >4, the asymptotic behavior of θt with ρ =1
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will be reported,(15,16) without any assumption on the restricted two-point
function. In this respect, our results are not so strong as the results in
refs. 15, 16 for oriented percolation. However, the approach reported in
this paper is short and intuitive, and more importantly, gives a unified
approach for both the time-oriented models and percolation. We expect
that, with the help of the random-current representation,(1) our unified
approach could be applied to the single-spin expectation 〈σo〉t for Ising
ferromagnets in the box of side length t (with plus-boundary condition),
and result in the mean-field behavior, i.e., 〈σo〉t � t−1 as t →∞, at the crit-
ical temperature in high dimensions. This will be discussed in ref. 26.

We organize the rest of this paper as follows. In Section 2, we define
the models and state the main result. A brief explanation of the proof is
given at the end of Section 2, and the detailed proof is given in Section 3.

2. MODELS AND THE RESULTS

2.1. Models

We consider the d-dimensional integer lattice Z
d as space. For L�1,

let

	={x ∈Z
d : 0< |x|�L}, D(x)=N−1 �{x∈	}, (2.1)

where |x| is the Euclidean norm of x, N is the cardinality of 	, and �{··· }
is the indicator function. The model with L = 1 is the nearest-neighbor
model, where N = 2d. We call the model with L> 1 the spread-out model,
where N = O(Ld) (see, e.g., ref. 17 for a more general definition). Our
models are defined in terms of D as follows.

Percolation. A bond {x, y} is an unordered pair of distinct sites in
Z

d , and is occupied with probability p D(y −x) and vacant with probabil-
ity 1 − p D(y − x), independently of the other bonds, where p ∈ [0,N ] is
the expected number of occupied bonds growing out of a single site. We
denote by Pp the probability distribution for the bond variables. We say
that x is connected to y, and write x ↔y, if either x =y or there is a path
of occupied bonds between x and y. We define C(x)={y ∈Z

d :x ↔y}. For
Z ⊂Z

d , we write {x ↔Z}={C(x)∩Z �=∅}.
It is known that there is a critical value pc = pc(d,L)�1 such that∑

x Pp(o↔x) is finite if and only if p <pc and diverges as p ↑pc. Let

Bt ={x ∈Z
d : |x|� t}, ∂Bt ={x ∈Z

d : t � |x|� t +L}. (2.2)

and define the two-point function and the point-to-surface connectivity at
pc as
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τ(x)=Ppc(o↔x), θt =Ppc(o↔ ∂Bt ). (2.3)

We are interested in the critical exponents η and ρ, defined by

τ(x)�|||x|||−(d−2+η), θt �|||t |||−ρ, (2.4)

where f �g means that f/g is bounded away from zero and infinity, and
where ||| · ||| = | · | ∨ 1. Note that ||| · ||| is not a norm on R

d , but it satisfies
the following properties: for x, y ∈R

d and r >0,

|||x +y|||� |||x|||+ |||y|||, |||rx|||
{

� r|||x|||, if r �1,

� r|||x|||, if r <1.
(2.5)

We also note that the above definition of ρ is based on the assumption
that θt decays as t → ∞. This has been confirmed only when d = 2 or
d �19 with L=1, and d >6 with L�1 (see, e.g., refs. 8, 12).

It has been proved that η = 0 for the nearest-neighbor model with
d � 6(9) and for the spread-out model with d > 6 and L� 1.(10) The crit-
ical exponent η is believed to be independent of the range L, as long as
it is finite (universality), and thus is expected to be zero for all d > 6 and
L�1. This dimension-independent value of η equals the corresponding
value for the mean-field model. Various other critical exponents are also
known to take on their respective mean-field values, if (see ref. 3 and ref-
erences therein)

�� ≡ sup
x /∈B�

(τ ∗D ∗ τ ∗ τ)(x)→0, as �→∞, (2.6)

where “∗” represents a convolution in Z
d . With the help of Proposition

1.7(i) in Ref. 10, η=0 implies �� =O(|||�|||−(d−6)) if d >6, and thus implies
the mean-field values for all the other critical exponents, except for ρ until
now.

Oriented percolation and the contact process. We begin with oriented
percolation. A bond ((x, t), (y, t + 1)) is an ordered pair of sites in Z

d ×
Z+, and is occupied with probability p D(y − x) and vacant with proba-
bility 1 − p D(y − x), independently of the other bonds, where p ∈ [0,N ].
We say that (x, s) is connected to (y, t), and write (x, s)→ (y, t), if either
(x, s)= (y, t) or there is an oriented path of occupied bonds from (x, s) to
(y, t). Let C(x, s)={(y, t)∈ Z

d × Z+ : (x, s)→ (y, t)}. For Z ⊂ Z
d × Z+, we

define {(x, s)→Z}={C(x, s)∩Z �=∅}.
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The contact process is a model for the spread of an infection in Z
d ,

and is regarded as continuous-time oriented percolation in Z
d × R+, via

the following graphical representation. Along each time line {x} × R+, we
place points in the manner of a Poisson process with intensity 1, inde-
pendently of the other time lines. For each ordered pair of distinct time
lines from {x} × R+ to {y} × R+, we place oriented bonds ((x, t), (y, t)),
t �0, in the manner of a Poisson process with intensity p D(y −x), inde-
pendently of the other Poisson processes, where p �0 is the infection rate.
We say that (x, s) is connected to (y, t), and write (x, s)→ (y, t), if either
(x, s)= (y, t) or there is an oriented path in Z

d ×R+ from (x, s) to (y, t)

using the Poisson bonds and time-line segments traversed in the increas-
ing-time direction without traversing the Poisson points. We define C(x, s)

and {(x, s)→Z} for Z ⊂Z
d ×R+ similarly to oriented percolation.

We denote by Pp the probability distributions for these time-oriented
models. It is known that there is a critical value pc =pc(d,L)�1, depend-
ing on the models, such that the sum over t ∈ Z+ of

∑
x Pp((o,0) →

(x, t)) for oriented percolation, or the integral of
∑

x Pp((o,0) → (x, t))

with respect to t ∈R+ for the contact process, is finite if and only if p<pc
and diverges as p ↑pc. Let

Bt =Z
d × [0, t ], ∂Bt =Z

d ×{t}, (2.7)

and define the two-point function and the survival probability at pc as

τt (x)=Ppc((o,0)→ (x, t)), θt =Ppc((o,0)→ ∂Bt ). (2.8)

We are interested in the critical exponents α, η, ν and ρ, defined by

τ̄t ≡ sup
x∈Zd

τt (x) � |||t |||−d/α, τ̂t ≡
∑
x∈Zd

τt (x)�|||t |||η, (2.9)

∑
x

|x|2 τt (x)

τ̂t

� |||t |||2ν, θt �|||t |||−ρ, (2.10)

where, by analogy, we used the same letters η and ρ for the critical expo-
nents of the spatial sum of the two-point function and the survival prob-
ability, respectively.

It has been proved that (α, η, ν)= (2,0, 1
2 ) for the time-oriented mod-

els with d > 4 and L � 1.(17,20) The same result except for α = 2 was
proved in ref. 23 for nearest-neighbor oriented percolation with d �4, but
there have been no results on this set of exponents for the nearest-neigh-
bor contact process. Other critical exponents for both the nearest-neighbor
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and spread-out time-oriented models are known to take on their respective
mean-field values, if (see ref. 4 and references therein)

�� ≡ sup
x:|x|� �

t � 0

�(x, t)→0, as �→∞, (2.11)

where, for oriented percolation,

�(x, t)=
∑

s,s′∈Z+
t � s′ � s

∑
y∈Zd

τs+1(y) (τs′−t ∗D ∗ τs−s′)(y −x), (2.12)

and for the contact process,

�(x, t)=
∫ ∞

t

ds

∫ s

t

ds′ ∑
y∈Zd

τs(y) (τs′−t ∗D ∗ τs−s′)(y −x). (2.13)

Since the range of the set of infected sites almost surely grows at most lin-
early,(5) (α, η)= (2,0) implies �� =O(|||�|||−(d−4)/2) if d >4, and thus implies
the mean-field values for all the other critical exponents than ρ.

2.2. Results

In this paper, we prove in a unified fashion for all three models that
the mean-field behavior for the two-point function implies the mean-field
values of ρ, assuming existence of ρ and the following assumption.

Assumption 2.1. There are positive constants C1 =C1(d,L) and
C2 = C2(d,L) that are independent of t such that, for the time-oriented
models,

∑
(x,s)∈Bt/2

Ppc((o,0)→ (x, s), (o,0) �→ ∂Bt )�C1|||t |||, (2.14)

and for percolation,

∑
x∈Bt/2+L

Ppc(o↔x, o �↔ ∂Bt )�C2|||t |||2, (2.15)

where Bt/2+L =Bt/2 ∪ ∂Bt/2.
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Fig. 1. Typical configurations for θt .

The unrestricted two-point functions defined in (2.3) and (2.8), with
η=0, satisfy the above inequalities. Therefore, Assumption 2.1 states, in a
weak sense, that the above restricted two-point functions exhibit the same
mean-field behavior as the unrestricted two-point functions.

Theorem 2.2. Suppose that η=0 and α=2 (the latter is only for the
time-oriented models). If ρ exists and Assumption 2.1 holds, then ρ =1 for
the time-oriented models with d >4 and ρ =2 for percolation with d >7.

We briefly explain the main idea of the proof. It is easy to show that
η=0 implies ρ �1 for the time-oriented models and ρ �2 for percolation
(see Section 3.1). It thus suffices to prove the opposite inequalities for ρ.
Let us consider typical configurations for θt . When t �1, there may be a
pivotal bond for the connection from the origin to the boundary ∂Bt . We
take notice of the last pivotal bond b, where we have a connection from
the origin to the first endpoint of b and two disjoint connections from the
second endpoint of b to ∂Bt (see Figure 1). If we could bound the proba-
bility of these configurations from below by θ2

t times the sum of the unre-
stricted two-point function (over b = (b, b) with b ∈ Bt/2, as in Figure 1),
then η=0 implies

t−ρ �
{

ct1−2ρ, for the time-oriented models,
ct2−2ρ, for percolation,

(2.16)

for some positive constant c, and thus ρ �1 for the time-oriented models
and ρ �2 for percolation.

To realize the above idea, we have to control the correction. As we
will show in Section 3.2, most error terms can be made small by letting
�� � 1 and t � 1 in high dimensions. However, the correction due to the
above approximation using the unrestricted two-point function cannot be
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controlled by a finite number of applications of the BK inequality (see, e.g.,
refs. 6, 8), and here we will use Assumption 2.1. The desired asymptotic
behavior of θt for spread-out oriented percolation with d > 4 and L � 1
will be reported in refs. 15, 16, with no assumption on the restricted two-
point function. The proof in refs. 15, 16 is based on the lace expansion
for θt , and the difference between the restricted and unrestricted two-point
functions is efficiently taken into account along the expansion. Our proof
of Theorem 2.2 does not depend on the full expansion as in refs. 15, 16,
and Assumption 2.1 is inevitable.

We remark that Assumption 2.1 is still insufficient to fully control the
boundary effect and thus to obtain ρ = 2 for percolation with d > 6. To
improve the result down to d >6, we may also need some information on
the restricted two-point function close to the boundary (see Remark at the
end of Section 3.2).

3. PROOFS

We prove Theorem 2.2 in two steps. First, in Section 3.1, we prove
that η=0 implies ρ �1 for the time-oriented models and ρ �2 for perco-
lation. Then, in Section 3.2, we prove that η = 0 and α = 2 (the latter is
only for the time-oriented models) imply the opposite inequalities for ρ,
if d > 4 for the time-oriented models and d > 7 for percolation, assuming
existence of ρ and Assumption 2.1.

In the rest of this paper, we omit the subscript pc and write E for
the expectation with respect to P = Ppc . We will use c to denote a finite
positive constant which may depend on d and L, but whose exact value is
unimportant and may change from line to line.

3.1. Proof of the Upper Bound

Proof for the time-oriented models. Let

It =�{(o,0)→∂Bt }, Xt =
∑
x

�{(o,0)→(x,t)}, (3.1)

so that E(It )= θt and E(Xt )= τ̂t . By the Schwarz inequality, we obtain

τ̂ 2
t =E(ItXt )

2 � E(I 2
t )E(X2

t )

= θt

∑
x,y

P((o,0)→ (x, t), (o,0)→ (y, t)). (3.2)

If (o,0)→ (x, t) and (o,0)→ (y, t) occur simultaneously, then there exists
a (z, s) ∈ Bt such that (o,0) → (z, s) occurs and that (z, s) → (x, t) and
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(z, s) → (y, t) occur disjointly, i.e., on disjoint sets of bonds. Using the
Markov property, the BK inequality and η=0, we can bound the sum in
(3.2) by∫ t

0
ds

∑
x,y,z

τs(z) τt−s(x − z) τt−s(y − z)=
∫ t

0
ds τ̂s τ̂ 2

t−s � c|||t |||. (3.3)

(The integral is replaced by
∑t

s=0 for oriented percolation.) Together with
(3.2), we thus obtain ρ �1, if ρ exists.

Remark. For spread-out oriented percolation with d > 4 and L � 1,
Theorem 4.1 and Lemma 4.2 in ref. 14 imply that the left-hand side of
(3.2) is asymptotically A2, while the sum in the right-hand side of (3.2) is
asymptotically A3V t , where A and V are constants depending only on d

and L. This leads to a lower bound on θt like (AV t)−1, which is consis-
tent with Theorem 1.5 in Ref. 14, where the limit limt→∞ t θt , if it exists,
equals 2(AV )−1.

Proof for percolation. We follow the same strategy as above. Let

It =�{o↔∂Bt }, Xt =
∑

x∈∂Bt

�{o↔x}. (3.4)

Using the Schwarz inequality as in (3.2), we obtain

[ ∑
x∈∂Bt

τ (x)
]2 =E(ItXt )

2 � E(I 2
t )E(X2

t )= θt

∑
x,y∈∂Bt

P(o↔x, o↔y).

(3.5)

Since η=0, the leftmost quantity is bounded from below by c|||t |||2. If o↔
x and o↔ y occur simultaneously, then there is a z∈Z

d such that o↔ z,
z↔x and z↔y occur disjointly. By the BK inequality and η=0, the sum
in the right-hand side of (3.5) is bounded by∑

x,y∈∂Bt

z∈Z
d

τ (z) τ (x − z) τ (y − z)

=
∑

x,y∈∂Bt
z∈Bt/2

τ(z) τ (x − z) τ (y − z)+
∑

x,y∈∂Bt
z/∈Bt/2

τ(z) τ (x − z) τ (y − z)

� c|||t |||2(2−d)+2(d−1)
∑

z∈Bt/2

|||z|||2−d + c|||t |||2−d
∑

x,y∈∂Bt

z∈Z
d

|||x − z|||2−d |||y − z|||2−d ,

(3.6)
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where we used |x − z|� t/2 and |y − z|� t/2 in the first sum, and |z|� t/2
in the second sum. By Proposition 1.7(i) in Ref. 10, the convolution of
|||x − z|||2−d and |||y − z|||2−d is bounded by c|||x − y|||4−d , whose sum over
x, y ∈ ∂Bt is bounded by c|||t |||2(d−1)+4−d = c|||t |||d+2. Therefore, (3.6) is
bounded by c|||t |||4, and we obtain ρ �2 using (3.5).

3.2. Proof of the Lower Bound

In this section, we will use ε = ε(ρ) defined by

ε(ρ)

{
>0 (but arbitrarily small), if ρ =1,

=0, if ρ �=1,
(3.7)

for both the time-oriented models and percolation.

Proof for the time-oriented models. We only consider oriented per-
colation, since the same idea given below also applies to the time-discret-
ized contact process in refs. 17, 24 that weakly converges to the original
contact process as the discretized-time unit tends to zero. We prove below

θt � c [1−O(�̄)−O(|||t |||−(d−4)/2+ε)] |||t |||1−2ρ, (3.8)

and thus prove Theorem 2.2 for the time-oriented models, assuming �̄≡
supx �(x,0) � 1. In the proof of (3.8), we will require pc �3/2, which
is a consequence of �̄ � 1, if d > 4.(18,22,24) We will also assume exis-
tence of a constant a > 1, which is independent of d and L, such that∑

s � t/2 τ̂s �aC1|||t ||| (cf., (2.14)) and K � θt |||t |||ρ �aK for some K > 0,
which may depend on d and L. After the proof, we briefly discuss how
to remove all these extra assumptions.

The survival probability θt is the probability of the event that there
is a path of occupied bonds from (o,0) to ∂Bt . This event can be decom-
posed into two disjoint events depending on whether or not (o,0) is doubly
connected to ∂Bt , denoted by (o,0)⇒ ∂Bt , which means that there are at
least two bond-disjoint occupied paths from (o,0) to ∂Bt . If (o,0) is con-
nected but not doubly connected to ∂Bt , then there is an occupied pivotal
bond b= (b, b) for (o,0)→∂Bt such that (o,0)→b, b⇒∂Bt and Cb(o,0)∩
∂Bt =∅, where Cb(o,0) is the set of sites in Z

d ×Z+ connected from (o,0)

without using b. Restricting the location of b in Bt/2 gives

θt �
∑

b:b∈Bt/2

1
N

P
(
(o,0)→b, b⇒ ∂Bt , Cb(o,0)∩ ∂Bt =∅)

, (3.9)

where we used pc �1.
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To investigate the right-hand side of the above inequality, we intro-
duce the following notion. For an event E and Z ⊂Z

d ×Z+, let {E in Z}
be the set of bond configurations whose restriction on bonds b contained
in Z (i.e., both b and b are in Z) are in E. Then, we can rewrite the prob-
ability in the right-hand side of (3.9) as (see Lemma 2.5 in ref. 13)

P
({(o,0)→b, Cb(o,0)∩ ∂Bt =∅} in Cb(o,0), {b⇒ ∂Bt } in Cb(o,0)c).

(3.10)

By the “conditioning on cluster” technique, (2,12,13) (3.10) equals

E

(
�{(o,0)→b, Cb(o,0)∩∂Bt=∅} P

(
b⇒ ∂Bt in Cb(o,0)c))

=P((o,0)→b, Cb(o,0)∩ ∂Bt =∅) P(b⇒ ∂Bt )

−E

(
�{(o,0)→b, Cb(o,0)∩∂Bt=∅}

[
P(b⇒ ∂Bt )−P

(
b⇒ ∂Bt in Cb(o,0)c)]).

(3.11)

First, we consider the first term in (3.11). By translation invariance
and monotonicity, P(b ⇒ ∂Bt ) is bounded from below by P((o,0)⇒ ∂Bt ).
Since Cb(o,0) ⊂ C(o,0), the contribution to (3.9) is bounded from below
by

P((o,0) ⇒ ∂Bt )
∑

b:b∈Bt/2

1
N

P((o,0)→b, (o,0) �→ ∂Bt )

� C1|||t ||| P((o,0)⇒ ∂Bt ), (3.12)

where we used the definition of D in (2.1) and Assumption 2.1. We now
prove that the right-hand side of (3.12) is bounded from below by the
same formula as in the right-hand side of (3.8). By restricting the num-
ber of occupied bonds growing out of (o,0) to two, P((o,0) ⇒ ∂Bt ) can
be bounded from below by

(pc

N

)2(
1− pc

N

)N−2 ∑
〈x,y〉

P

(
(x,1)→ ∂Bt , (y,1)→ ∂Bt ,

C(x,1)∩C(y,1)=∅ in Bt

)
, (3.13)
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where
∑

〈x,y〉 is the sum over all pairs of distinct sites in 	. We note that
p2

c (1 − pc
N

)N−2 is always bounded from above by an N -independent con-
stant, while it is bounded from below by e−1 using pc �3/2. By condition-
ing on C(x,1), (3.13) equals

(pc

N

)2(
1− pc

N

)N−2 ∑
〈x,y〉

E

(
�{(x,1)→∂Bt } P

(
(y,1)→ ∂Bt in C(x,1)c)).

(3.14)

If we ignore the condition “in C(x,1)c”, we obtain the main contribution
e−1

N2

(
N
2

)
θ2
t � K2

4e
|||t |||−2ρ . The correction is

(pc

N

)2(
1− pc

N

)N−2

×
∑
〈x,y〉

E

(
�{(x,1)→∂Bt } P

({(y,1)→ ∂Bt }\{(y,1)→ ∂Bt in C(x,1)c})).

(3.15)

We need an upper bound on (3.15) to obtain a lower bound on the left-
hand side of (3.12). Since the event inside P in (3.15) is the event that
all occupied paths from (y,1) to ∂Bt go through C(x,1), there must be a
(z, s)∈C(x,1) such that (y,1)→ (z, s)→∂Bt . By the Markov property, the
expectation in (3.15) is bounded by

E

(
�{(x,1)→∂Bt }

∑
(z,s)∈C(x,1)

τs−1(z−y) θt−s

)

=
∑
(z,s)

P((x,1)→ ∂Bt , (z, s)∈C(x,1)) τs−1(z−y) θt−s . (3.16)

We consider
∑

s � t/2 and
∑

s>t/2 separately. For the former sum, we use
the BK inequality to bound (3.16) by

t/2∑
s=2

s∑
s′=1

∑
z,z′∈Zd

τs′−1(z
′ −x) τs−s′(z− z′) τs−1(z−y) θt−s θt−s′ . (3.17)

Since t − s′ � t − s � t/2 and s �2 (because x �= y), the contribution to
(3.15) is bounded by 4ρ(aK)2 �̄ |||t |||−2ρ , where we used (2.5). On the other
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hand, we use (3.16) to bound the sum over s > t/2. If we ignore the con-
dition (x,1)→ ∂Bt , then (3.16) is bounded by

t∑
s=t/2

τ̂s−1 τ̄s−1 θt−s � c|||t |||−d/2
t∑

s=t/2

|||t − s|||−ρ. (3.18)

Since ρ �1, the right-hand side is further bounded by c|||t |||−d/2+1−ρ+ε �
c|||t |||−2ρ−(d−4)/2+ε . Therefore, (3.12) is bounded from below by

C1K
2

4e
(1−4ρ+1ea2 �̄−c|||t |||−(d−4)/2+ε) |||t |||1−2ρ. (3.19)

Next, we investigate the second term in (3.11). Note that the event
{b⇒∂Bt }\{b⇒∂Bt in Cb(o,0)c} implies existence of a (z, s)∈Cb(o,0) such
that b → ∂Bt and b → (z, s)→ ∂Bt occur disjointly. By the BK inequality
and the definition (2.1), the contribution to (3.9) from the second term in
(3.11) is bounded by

∑
(z,s),(v,s′)
1 � s′<t/2

∑
b:b=(v,s′)

1
N

P
(
(o,0)→b, (z, s)∈Cb(o,0)

)
τs−s′(z−v) θt−s θt−s′

�
∑

(z,s),(v,s′)
1 � s′<t/2

∑
(y,r),(u,s′−1)

0 � r<s′

τr (y) τs′−1−r (u−y)D(v −u) τs−s′(z−v)

× τs−r (z−y) θt−s θt−s′

� 2ρaK

|||t |||ρ
t/2−1∑
r=0

τ̂r

t∑
s=r+1

(t/2)∧s∑
s′=r+1

∑
x∈Zd

(τs′−1−r ∗D ∗ τs−s′)(x) τs−r (x) θt−s ,

(3.20)

where we used s′ � t/2 to bound θt−s′ . We separate the sum over s into∑
s � 3t/4 and

∑
s>3t/4. When s �3t/4, we bound θt−s by 4ρaK|||t |||−ρ ,

and then bound the remaining term by �̄∑t/2−1
r=0 τ̂r �aC1 �̄ |||t |||. When

s > 3t/4, we bound τ̄s−r by c|||t |||−d/2 using r < t/2, and then bound the
remaining term, using ρ �1, by

c|||t |||
t/2−1∑
r=0

t∑
s=3t/4

|||t − s|||−ρ � c|||t |||3−ρ+ε . (3.21)
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By summarizing the above estimates, (3.20) is bounded by

(8ρa3C1K
2 �̄+c |||t |||−(d−4)/2+ε) |||t |||1−2ρ. (3.22)

The proof of (3.8) is completed by (3.19) and (3.22).
We obtain (2.16) from (3.8) if �̄� 1, t � 1 and d > 4. Together with

ρ �1 proved in Section 3.1, this completes the proof of ρ =1.

Remark. In the above proof, we exploited the assumptions stated
below (3.8). These assumptions can be removed via a delocalization argu-
ment(4) (or, it is also called ultraviolet regularization(2,3,12)). In fact, we can
prove that there is a c� >0 such that

t−ρ � c� [1−O(��)−O(t−(d−4)/2+ε)] t1−2ρ, for t ��. (3.23)

Recall that (α, η)= (2,0) implies lim�→∞ �� =0, as explained below (2.13).
Taking � and t in (3.23) sufficiently large, independently of d and L, we
obtain (2.16) for the time-oriented models. Therefore, we do not need the
extra assumptions stated below (3.8).

We briefly explain the idea for the proof of (3.23). Recall (3.9), where
b is the last pivotal bond for (o,0)→∂Bt . The space-time rectangle R�(b)

is defined as

R�(b)={
b+ (reb, s)∈Z

d ×Z+ : r ∈ [−�, �], s ∈ [0, �]
}
, (3.24)

where eb = (v−u)/|v−u| for b= ((u, s), (v, s +1)). We may modify the occu-
pation status of bonds contained in R�(b), in order to thin the connection
from (o,0) to ∂Bt . Let ER�(b) be such an event that b is “minimally” con-
nected, via b, to both X± ≡b+ (±�eb, �). Then, we obtain (cf., (3.9))

θt �
∑

b:b∈Bt/2

P(ER�(b)) P

(
(o,0)→b , CR�(b)(o,0)∩ ∂Bt =∅,

{X+→ ∂Bt } ◦ {X−→ ∂Bt }
)

,

(3.25)

where E1 ◦E2 is the event that E1 and E2 occur disjointly, and CR�(b)(o,0)

is the set of sites connected from (o,0) without using any bonds contained
in R�(b). In (3.25), we used the fact that ER�(b) is independent of the
other three events in P. We choose c� = infb P(ER�(b)). For the remain-
ing term, we follow the same strategy as in the proof for the case �̄ �1,
except that we do not need an argument around (3.13). This leads to
(3.23).
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It remains to determine ER�(b). This was well-explained in ref. 4 for
the time-discretized contact process. A variant of ER�(b) in ref. 4 was cho-
sen in such a way that c� is bounded away from zero uniformly in the dis-
cretized-time unit. It is not hard to adapt the idea of ref. 4 to our settings,
and we refrain from giving its details. See Figure 1 in ref. 4.

Proof for percolation. The strategy is the same as above. We prove
below

θt � c [1−O(�0)−O(|||t |||−(d−5−ρ∨1)+ε)] |||t |||2−2ρ, (3.26)

for t �2L (so that ∂Bt/2 ⊂ Bt ), and hence Theorem 2.2 for percolation,
assuming �0 � 1. Similarly to the proof for the time-oriented models, we
will also assume that pc �3/2, which is indeed the case when �0 � 1
and d >6,(11,18) and that there is a (d,L)-independent constant a >1 such
that

∑
x∈B3t/2+L

τ (x)�aC2|||t |||2 (cf., (2.15)) and K � θt |||t |||ρ �aK for some
K >0, which may depend on d and L. These assumptions can be removed
as discussed above and as in refs. 2, 3, 12, and thus we omit its details for
simplicity.

The percolation version of the joint inequality of (3.9)–(3.11) is

θt �
∑

b:b∈Bt/2

1
N

P(o↔b, Cb(o)∩ ∂Bt =∅) P(b⇔ ∂Bt )

−
∑

b:b∈Bt/2

1
N

E

(
�{o↔b, Cb(o)∩∂Bt=∅}

× [
P(b⇔ ∂Bt )−P

(
b⇔ ∂Bt in Cb(o)c)]), (3.27)

where “⇔” represents a double connection for percolation. Similarly to
the argument around (3.12), by using P(b ⇔ ∂Bt )�P(o ⇔ ∂B3t/2) and
Cb(o) ⊂ C(o), together with the definition (2.1) and Assumption 2.1, the
first sum in (3.27) is bounded from below by

C2|||t |||2 P(o⇔ ∂B3t/2). (3.28)

We first prove that (3.28) is bounded from below by the same formula
as in the right-hand side of (3.26). There are minor changes to investi-
gate P(o⇔ ∂B3t/2), and now we discuss these modifications. Let C̃3t/2(x)⊂
B3t/2+L be the set of sites to which there is an occupied path from x

that includes at most one bond touching ∂B3t/2 and no bonds touching
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o∈Z
d . By restricting the number of occupied bonds touching o ∈ Z

d to
two, P(o⇔ ∂B3t/2) is bounded from below by (cf., (3.13))

(pc

N

)2(
1− pc

N

)N−2 ∑
〈x,y〉

P

(
x ↔ ∂B3t/2 in {o}c, y ↔ ∂B3t/2 in {o}c,

C̃3t/2(x)∩ C̃3t/2(y)=∅
)

.

(3.29)

By conditioning on C̃3t/2(x), the above expression equals

(pc

N

)2(
1− pc

N

)N−2 ∑
〈x,y〉

E

(
�{x↔∂B3t/2 in {o}c}

×P
(
y ↔ ∂B3t/2 in {o}c ∩ C̃3t/2(x)c))

=
(pc

N

)2(
1− pc

N

)N−2 ∑
〈x,y〉

[
P(x ↔ ∂B3t/2 in {o}c) P(y ↔ ∂B3t/2 in {o}c)

−E

(
�{x↔∂B3t/2 in {o}c}

×P
({

y ↔ ∂B3t/2 in {o}c}\{y ↔ ∂B3t/2 in {o}c ∩ C̃3t/2(x)c}))]
.

(3.30)

Here, we have P(x ↔∂B3t/2 in {o}c), instead of P(x ↔∂B3t/2). The correc-
tion is the probability of the event that all occupied paths between x and
∂B3t/2 go through the origin, and thus is bounded by the probability of
the event that x ↔o and o↔∂B3t/2 occur disjointly. By the BK inequality
and monotonicity, we obtain

P(x ↔ ∂B3t/2 in {o}c) � P(x ↔ ∂B3t/2)− τ(x) θ3t/2

� θ3t/2+L − τ(x) θ3t/2. (3.31)

The contribution to (3.30) from θ 2
3t/2+L

is bounded from below by
K2

4e
||| 3t

2 + L|||−2ρ � K2

4e
2−2ρ |||t |||−2ρ , where we used pc �3/2 (cf., the argu-

ment below (3.13)) and t �2L together with (2.5). Since N−2 =D(x)D(y)

in (3.30), the contribution from the terms containing τ(x) θ3t/2 or τ(y) θ3t/2
is bounded by K2O(�0)|||t |||−2ρ .

To complete bounding (3.28), it suffices to prove that the expectation
in (3.30) is bounded by

(a2K2 �0 + c|||t |||−(d−5−ρ∨1)+ε) |||t |||−2ρ. (3.32)
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Since the event inside P is the event that all occupied paths from y to
∂B3t/2 in {o}c go through C̃3t/2(x) ⊂ B3t/2+L, there must be a z ∈ C̃3t/2(x)

such that y ↔z and z↔∂B3t/2 occur disjointly. Therefore, the expectation
in (3.30) is bounded, using the BK inequality, by

E

(
�{x↔∂B3t/2 in {o}c}

∑
z∈C̃3t/2(x)

τ (z−y) P(z↔ ∂B3t/2)
)

�
∑

z∈B3t/2+L

P(x ↔ ∂B3t/2, z∈ C̃3t/2(x)) τ (z−y) P(z↔ ∂B3t/2).

(3.33)

We separate the sum into
∑

z∈B3t/2+L\Bt/2
and

∑
z∈Bt/2

. As in (3.18), by

ignoring2 the condition x ↔ ∂B3t/2 and using P(z ↔ ∂B3t/2)� θ(3t/2−|z|)∨0,
the former sum is bounded by

∑
z∈B3t/2+L\Bt/2

τ(z−x) τ(z−y) θ(3t/2−|z|)∨0

� c|||t |||(d−1)+2(2−d)
(
L+

t∑
s=0

|||s|||−ρ
)

� c|||t |||−2ρ−(d−ρ−3−ρ∨1)+ε . (3.34)

This is further bounded by |||t |||−2ρ−(d−5−ρ∨1)+ε , because ρ �2. For the
sum

∑
z∈Bt/2

, we first bound P(z ↔ ∂B3t/2) by aK|||t |||−ρ . Then, note that
the event inside the former P in (3.33) implies existence of w ∈ B3t/2+L

such that x ↔w, w↔z and w↔∂B3t/2 occur disjointly. Again by the BK
inequality, the contribution to (3.33) from z∈Bt/2 is bounded by

aK|||t |||−ρ
∑

z∈Bt/2
w∈B3t/2+L

τ (x −w) τ(w − z) τ (z−y) P(w ↔ ∂B3t/2). (3.35)

We further separate the sum over w into
∑

w∈Bt/2
and

∑
w∈B3t/2+L\Bt/2

. For
the former sum, we bound P(w ↔ ∂B3t/2) by aK|||t |||−ρ , and then bound

2Some readers might wonder whether the condition x ↔ ∂B3t/2 could be used to have less
power in (3.34). In fact, if we use the inequality

P(x ↔ ∂B3t/2, z∈ C̃3t/2(x))�
∑

w∈B3t/2+L

τ(w −x) τ(z−w) θ(3t/2−|w|)∨0,

then the contribution due to w ∈Bt/2 is bounded by (3.36), while the contribution from w ∈
B3t/2+L\Bt/2 has a worse bound c|||t |||−2ρ+µ, where µ is negative only when d >9.
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the remaining term by �0, using x �=y. For the latter sum, we use P(w↔
∂B3t/2)� θ(3t/2−|w|)∨0 and perform the sum over z using Proposition 1.7(i)
in ref. 10. Since x, y ∈ 	, the expression (3.35) due to the sum over w ∈
B3t/2+L\Bt/2 is bounded by

c|||t |||−ρ
∑

w∈B3t/2+L\Bt/2

|||w|||(2−d)+(4−d) ||| 3
2 t −|w| |||−ρ

� c|||t |||−ρ+(6−2d)+(d−1)
(
L+

t∑
s=0

|||s|||−ρ
)

� c|||t |||−2ρ−(d−5−ρ∨1)+ε . (3.36)

Summarizing the above estimates, we conclude that (3.28) is bounded
from below by the same formula as in the right-hand side of (3.26), where
a multiple constant corresponding to c in (3.26) is O(C2K

2). The second
sum in (3.27) can be estimated similarly to (3.35), where z in (3.35) corre-
sponds to b in (3.27), and is bounded by a similar formula to (3.32), mul-
tiplied by O(C2)|||t |||2. This completes the proof of (3.26).

We obtain (2.16) from (3.26) if �0 � 1, t � 1 and d > 5 + ρ ∨ 1, and
thus obtain ρ =2 for d >7. This completes the proof.

Remark. The value of ρ for percolation is expected to be 2 as soon
as d >6. The main obstacle to going down from d >7 is in (3.34) and
(3.36), which correspond respectively to (3.18) and (3.21) for the time-
oriented models. In (3.18) and (3.21), the sum over s is fully controlled
using θt−s �|||t − s|||−ρ . On the other hand, the point-to-surface connec-
tivity θ(3t/2−|v|)∨0, with v = z in (3.34) and v =w in (3.36), is insufficient
to obtain the desired bound, when v is close to the boundary ∂B3t/2.
This difficulty is considered to be caused by naively bounding the prob-
ability inside E in (3.30) as in (3.33). Since

{
y ↔ ∂B3t/2 in {o}c

}\{y ↔
∂B3t/2 in {o}c ∩ C̃3t/2(x)c

}
is the event that all occupied paths from y to

∂B3t/2 (in {o}c) have to go through C̃3t/2(x) before reaching to the bound-
ary, the approximation by the unrestricted two-point function τ(z − y) in
(3.33) could be very crude when z is close to ∂B3t/2, due to the isotropic
property for percolation. If we assume that there is a κ �1 such that, for
|z|=�,

P(o↔ z, o �↔ ∂Bt )� c|||�|||2−d−κ(|||�|||∧ |||t −�|||)κ , (3.37)

then we will be able to obtain the desired inequality (2.16) down to d >6.
Note that (3.37) contains the factor |||t −�||| that decreases as z approaches
the boundary ∂Bt , that the sum of the right-hand side over z ∈ Bt is
bounded by c|||t |||2, and that the limit t →∞ of the right-hand side, while
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� or �/t is fixed, is c|||�|||2−d . Therefore, (3.37) is a good candidate for the
bound on the restricted two-point function, though we have not proved
whether (3.37) really holds or does not. (For random walk, a similar
inequality holds at �= t with κ =1.)
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485 (2003).

21. G. F. Lawler, O. Schramm and W. Werner, One-arm exponent for critical 2D percolation,
Electronic J. Probab. 7:2 (2002).

22. B. G. Nguyen and W.-S. Yang, Triangle condition for oriented percolation in high
dimensions, Ann. Probab. 21:1809–1844 (1993).

23. B. G. Nguyen and W.-S. Yang, Gaussian limit for critical oriented percolation in high
dimensions, J. Statist. Phys. 78:841–876 (1995).

24. A. Sakai, Mean-field critical behavior for the contact process, J. Statist. Phys. 104:111–
143 (2001).

25. A. Sakai, Hyperscaling inequalities for the contact process and oriented percolation,
J. Statist. Phys. 106:201–211 (2002).

26. A. Sakai, Mean-field behavior of the finite-volume single-spin expectation for Ising ferro-
magnets, In preparation.

27. H. Tasaki, Hyperscaling inequalities for percolation, Commun. Math. Phys. 113:49–65
(1987).


